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Abstract

Recent research has shown a growing interest in per-instance
differential privacy (pDP), highlighting the fact that each data
instance within a dataset may incur distinct levels of privacy
loss. However, conventional additive noise mechanisms apply
identical noise to all query outputs, thereby deteriorating data
statistics. In this study, we propose an instance-wise Laplace
mechanism, which adds non-identical Laplace noises to the
query output for each data instance. A challenge arises from
the complex interaction of additive noise, where the noise in-
troduced to individual instances impacts the pDP of other in-
stances, adding complexity and resilience to straightforward
solutions. To tackle this problem, we introduce an instance-
wise Laplace mechanism algorithm via deep reinforcement
learning and validate its ability to better preserve data statis-
tics on a real dataset, compared to the original Laplace mech-
anism.

Introduction
The concept of differential privacy (DP) is first introduced
by Dwork (2006) for safeguarding the privacy of individual
data points with the level of ϵ. The Laplace mechanism is a
representative additive noise mechanism for guaranteeing ϵ-
DP, which can be simply applied by adding identical Laplace
noises to query outputs. However, a new definition of per-
instance DP (pDP) pointed out the need for non-identical
additive noise since each query output naturally has a dif-
ferent level of privacy (Wang et al. 2019). However, there
have been no studies on non-identical noise optimization for
pDP manner due to correlated privacy loss and output distri-
butions. In this study, our focus is to propose the instance-
wise Laplace mechanism via deep reinforcement learning
(DRL) (Mnih et al. 2015).

Contribution Our finding is the first instance-wise
Laplace mechanism. We design the optimization process as
a Markov decision process (MDP). To solve the MDP prob-
lem, we propose a DQN-based algorithm aiming to guaran-
tee ϵ-pDP and to preserve the data statistics. The numerical
results ensure that the proposed method better preserve data
statistics via carefully designing appropriate noise for each
data instance.
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Figure 1: A deep reinforcement learning approach to find an
optimal variance set for instance-wise Laplace mechanism,
to better preserve data statistics while guaranteeing ϵ-pDP.

Backgrounds
Per-instance-DP For a given dataset Z , a randomized
mechanism M satisfies ϵ-pDP if the following inequality
holds for a data point z and all S ⊆ Range(M):

Pr[K(Z) ∈ S] ≤ exp(ϵ)× Pr[K(Z ∪ {z}) ∈ S]. (1)

Laplace mechanism Let us define the l1 sensitivity of a
function f : N|X | → Rk as ∆f = maxz1,z2∈Z ∥f(z1) −
f(z2)∥1. Then, the Laplace mechanism for satisfying ϵ-pDP
is denoted as:

MLM(x, f(·), ϵ) = f(x) + (Y1, Y2, ..., Yk), (2)

where Yi are i.i.d random variables drawn from Lap(∆f/ϵ).

Random sampling query We set our target query as a
random sampling query. Given numeric dataset Z , the out-
put of a random sampling query q is a random variable fol-
lowing the probability distribution of a data set:

q(Z) ∼ Pr(Z). (3)

Methodology
We introduce the concept of applying Laplace noise with
varying variances to each query output of data instances
— namely, instance-wise Laplace mechanism (ILM). This
approach offers the potential to better preserve data statis-
tics compared to the conventional Laplace mechanism while
maintaining the same ϵ-pDP for all data.



 



Figure 2: Comparison of query output probability distribu-
tions and KL-divergences between original distribution, for
the height data with each algorithm for ϵ = 0.011.

Definition 1 (Instance-wise Laplace mechanism) Given
any function f : N|D| → Rk for a fixed data set
D =

⋃|D|
i=1 di, the instance-wise Laplace mechanism is

defined as:

KI(f(di), ϵ) = f(di) + (Yi1, Yi2, ..., Yik), (4)

where Yij are random variables drawn form Lap(bij).

Implementing ILM in practice poses a challenge due to
the strong correlation among the pDP values associated with
each datum. Thus we propose to exploit deep reinforcement
learning (DRL), which could find a pattern in a complex sit-
uation, to find an optimal variance set for ILM, as seen in
Fig. 1. We define one episode as specifying the noise distri-
bution of all data in the data set once.

State The state is formed by concatenating two vectors
corresponding to the positional-encoded (Vaswani et al.
2017) current query output value and the PMF of total query
outputs.

Action The action involves determining a noise variance
value for a current data instance and adding this to its query
output. In our simulation, we utilized the five options as a
variance-related b value, 3×∆f

ϵ , 2×∆f
ϵ , ∆f

2 , 0.01×∆f
2 , and

0.001×∆f
2 , where the b = ∆f

ϵ for the Laplace mechanism’s
noise.

Reward The reward of the model is composed of the sum
of two values, R = RE + RU, to minimize KL-divergence
while guaranteeing ϵ-pDP. RE plays a role in determining
whether the impact of adding noise satisfies the ϵ-pDP con-
straint. If the current noise satisfies ϵ-pDP, a reward 1 is
given; otherwise, a penalty -1 is imposed. The RU is given
by 1 − DKL(q(D)||ADRL(q(D)))

DKL(q(D)||ALAP(q(D))) , if DKL(q(D)||ADRL(q(D)))

(the KL-divergence of the DRL-modified distribution) is
less than DKL(q(D)||ALAP(q(D))) (the KL-divergence of
the Laplace mechanism-modified distribution). Otherwise,
RU is given as -1.

Experiments and Results
We have evaluated our method with a personal height
dataset, publicly available at Kaggle competition1. In our ex-

1https://www.kaggle.com/datasets/justinas/nba-players-data



Figure 3: Comparison of chosen noise variance distributions
for the height data with each algorithm for ϵ = 0.011.

periment, we carefully configure the smallest possible value
of ϵ which is guaranteed ϵ-pDP with our algorithm.

Figure 2 compares the distributions of the original dataset
and randomized dataset. As the figure shows, the proposed
method much better preserves the shape of the distribution
compared to the conventional mechanism, even though both
methods achieve the same level of ϵ-pDP. In the case of a
very small ϵ, the Laplace mechanism nearly erases the orig-
inal characteristics of the dataset. To quantitatively measure
the data statistics, we compare the data statistics in KL di-
vergence utility. The proposed method achieves lower KL-
divergence (0.883) compared to the conventional Laplace
mechanism (1.968), which means our method quantitatively
better preserves statistical utility.

Figure 3 shows the standard deviation of added noises
for each data instance. As shown in the figure, the proposed
method exploits noises of varying and generally lower vari-
ances distinct from the conventional Laplace mechanism.
More importantly, the proposed method applies relatively
low-variance noises to frequently occurring data instances,
which is a natural approach because the more frequently data
instances occur, the lower the privacy risks are.

Discussion and Future Directions
Our finding is the first work on the instance-wise Laplace
mechanism; however, the proposed method lacks generality
in various types of noise distributions such as Gaussian. In
future works, we will target:
• A generalized mechanism for instance-wise pDP.
• A Low-complex pDP mechanism.
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